Televes

Jarretière optique duplex LC/PC, multimode (MM) OM4, LSFH d'intérieur

Jarretière optique duplex multimode (MM) avec connecteurs LC/PC pour le raccordement d'éléments de réseau optique. En outre, elles sont particulièrement bien adaptées aux réseaux point à point où la même plage de longueur d'onde est utilisée en voie descendante et en voie remontante. La gaine est LSFH et est recommandée pour une utilisation en intérieur. Livré en emballage individuel.

Réf.	230932
Réf. Logique	OSK2LCOM4
EAN13	8424450277201

Autres caractéristiques

Couleur	Magenta	
Longueur	2,00 m	
Emballage		
Sachet	1 pièces	

Données physiques

Poids net	42,00 g
Poids brut	46,00 g
Largeur	3,00 mm
Hauteur	2.000,00 mm
Profondeur	3,00 mm
Poids du produit principal	42,00 g

Vous aimerez

• Intègre une identification pour chaque fibre

Televes

- Intègre des fibres d'aramide, pour renforcer la structure
- Type de fibre multimode OM4 G.651.1
- Jarretère duplex: deux câbles de fibre
- Gaine LSFH, couleur magenta
- Connecteurs LC/PC
- Longueur 2m

Découvrir

Types de fibres multimodes

La fibre optique multimode (MM) est celle qui permet de transmettre **plusieurs modes de lumière simultanément**, permettant la propagation de plusieurs signaux en même temps. Son principal avantage par rapport à la fibre monomode (SM) est le coût moindre de la fibre et des dispositifs optiques, ce qui en fait une **solution idéale pour les courtes distances**, comme les réseaux d'entreprise, les salles de communication ou les centres de données.

Les câbles en fibre multimode sont classés en **5 catégories**, appelées OM (Optical Multimode), de OM1 à OM5, et se différencient principalement par leur **vitesse de transmission en fonction de la distance**.

Le tableau suivant montre la distance que chaque catégorie atteint en fonction de la vitesse de transmission :

Catégorie	Fast Ethernet	Gigabit Eth.	10Gigabit Eth.	40Gigabit Eth.	100Gigabit Eth.
OM1	2000m	275m	33m	-	-
OM2	2000m	550m	82m	-	-
ОМ3	2000m	-	300m	100m	70m
OM4	2000m	-	550m	150m	150m
OM5	-	-	550m	150m	150m

Televes

En outre, les fibres multimodes se distinguent par plusieurs facteurs :

- Les fibres OM1 ont un diamètre de noyau de 62,5μm, tandis que les fibres OM2, OM3, OM4 et
 OM5 ont un noyau plus petit de 50μm
- Les OM1 et OM2 ont été les premiers à être développés. Ils sont conçus pour être utilisés avec des sources lumineuses LED et tendent aujourd'hui à être désaffectés, car ils ne sont pas adaptés aux réseaux à haut débit. Les catégories suivantes, OM3, OM4 et OM5, ont été conçues pour être utilisées avec des émetteurs laser (VCSEL) permettant d'atteindre des niveaux plus élevés de bande passante et de vitesse
- Les fibres **OM3 et OM4** fonctionnent avec des longueurs d'onde de **850 nm**, mais la fibre **OM5** a été optimisée pour les applications **WDM** (Wave Division Multiplexing). Elle est capable de transmettre jusqu'à 4 canaux à des longueurs d'onde plus élevées (880, 910 et 940 nm), obtenant ainsi une **bande passante très élevée**

Le tableau suivant résume les principales caractéristiques de chaque type de fibre multimode :

Catégorie	Diamètre du noyau/de la gaine	Couleur extérieure habituelle	Source optique	Bande passante
OM1	65,2/125μm	Orange	LED	200 MHz·km
OM2	50/125μm	Orange	LED	500 MHz·km
ОМ3	50/125μm	Aqua bleu	Laser (VCSEL)	2000 MHz·km
OM4	50/125µm	Magenta	Laser (VCSEL)	4700 MHz·km
OM5	50/125μm	Vert lime	Laser (VCSEL)	28000 MHz·km

Quelle est la différence entre OM3 et OM4?

Parmi les différentes catégories de fibres multimodes (MM), les fibres **OM3 et OM4** se distinguent comme les **plus utilisées aujourd'hui**, car elles permettent d'atteindre une vitesse de transmission et une largeur de bande élevées à un prix abordable. La fibre **OM4 est une évolution de l'OM3**, grâce à sa construction interne améliorée, elle présente une **atténuation plus faible** et parvient donc à fonctionner avec une **largeur de bande plus élevée** que l'OM3, atteignant ainsi de **plus grandes distances**.

Caractéristiques techniques : Ref. 230932

Type de fibre		Multimode (ITU-T-G.651.1)	
##		OM4	
Diamètre ame de fibre	μm	50	
Diamètre revêtement de fibre	μm	125	
Diamètre de recouvrement de la fibre	μm	250	
Diamètre Gaîne extérieure	mm	3	
Matière Gaîne extérieure		LSFH	
Gèle bloquant		Non	
Pertes d'insertion en connecteur 1	dB	< 0,3	
Pertes d'insertion en connecteur 2	dB	< 0,3	
Pertes de retour en connecteur 1	dB	> 30	
Pertes de retour en connecteur 2	dB	> 30	
Type de connecteur optique 1		LC	
Type de finition (Connecteur optique 1)		PC	
Type de connecteur optique 2		LC	
Type de finition (Connecteur optique 2)		PC	
Elément de renforcement de la structure		Fibres d'aramide	
Rayon de courbure minimal	mm	45	
Température de fonctionnement	°C	-20 70	